Towards Efficient Build Ordering for Incremental Builds with
Multiple Configurations

JUN LY U, Nanjing University, China

SHANSHAN LI", Nanjing University, China

HE ZHANG, Nanjing University, China

LANXIN YANG, Nanjing University, China

BOHAN LIU, Nanjing University, China

MANUEL RIGGER, National University of Singapore, Singapore

Software products have many configurations to meet different environments and diverse needs. Building
software with multiple software configurations typically incurs high costs in terms of build time and computing
resources. Incremental builds could reuse intermediate artifacts if configuration settings affect only a portion
of the build artifacts. The efficiency gains depend on the strategic ordering of the incremental builds as the
order influences which build artifacts can be reused. Deriving an efficient order is challenging and an open
problem, since it is infeasible to reliably determine the degree of re-use and time savings before an actual
build. In this paper, we propose an approach, called BUDDI—-BUild Declaration DIstance, for C-based and
Maxke-based projects to derive an efficient order for incremental builds from the static information provided
by the build scripts (i.e., Makefile). The core strategy of BUDDI is to measure the distance between the build
declarations of configurations and predict the build size of a configuration from the build targets and build
commands in each configuration. Since some artifacts could be reused in the subsequent builds if there is a
close distance between the build scripts for different configurations. We implemented BUDDI as an automated
tool called BuddiPlanner and evaluated it on 20 popular open-source projects, by comparing it to a baseline
that randomly selects a build order. The experimental results show that the order created by BuddiPlanner
outperforms 96.5% (193/200) of the random build orders in terms of build time and reduces the build time
by an average of 305.94s (26%) compared to the random build orders, with a median saving of 64.88s (28%).
BuddiPlanner demonstrates its potential to relieve practitioners of excessive build times and computational
resource burdens caused by building multiple software configurations.

CCS Concepts: » Software and its engineering — Software maintenance tools.
Additional Key Words and Phrases: Build Tool, Software Configurations, Incremental Builds

ACM Reference Format:

Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger. 2024. Towards Efficient
Build Ordering for Incremental Builds with Multiple Configurations. Proc. ACM Softw. Eng. 1, FSE, Article 67
(July 2024), 24 pages. https://doi.org/10.1145/3660774

*Corresponding author

Authors’ addresses: Jun Lyu, Nanjing University, Nanjing, China, lvjun@smail.nju.edu.cn; Shanshan Li, Nanjing University,
Nanjing, China, Iss@nju.edu.cn; He Zhang, Nanjing University, Nanjing, China, hezhang@nju.edu.cn; Lanxin Yang, Nanjing
University, Nanjing, China, Ixyang@nju.edu.cn; Bohan Liu, Nanjing University, Nanjing, China, bohanliu@nju.edu.cn;
Manuel Rigger, National University of Singapore, Singapore, Singapore, rigger@nus.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2994-970X/2024/7-ART67

https://doi.org/10.1145/3660774

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

https://doi.org/10.1145/3660774
https://doi.org/10.1145/3660774

67:2 Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger

1 INTRODUCTION

Practitioners use build systems such as GNU MaKE [17], Maven [42], Ninja [46], and ANT [5] to
compile and package various artifacts into executable programs or deliverables. The emergence
and prevalence of Continuous Integration (CI) have further expanded the importance of software
builds, which guarantees software quality while enabling rapid iterative software updates [58].
However, the cost (e.g., build time and computing resources) of software builds increases with the
growing complexity and scale of software projects.

Software configurations are options to configure software and then create multiple variants,
which complicate building software, exacerbating build time and computing resource costs [38, 41].
Different software configurations are available in many software projects in order to build a
variety of software artifacts in varying environments and with diverse requirements. For example,
configurations often allow building different versions (debug or release versions), including or
excluding third-party libraries, enabling from a minimum set to all features, and adapting to different
processors (x86 or ARM). Practitioners expect each configuration to work correctly. Therefore, it
is common to build and test multiple software configurations in practice. For example, the Linux
kernel has more than 14,500 compile-time options [34, 41]. To test the Linux kernel, KernelCI'
needs to build the Linux kernel using thousands of compilation options every day [30, 41].

In this paper, we focus on building multiple configurations for C-based and MakE-based projects—
MAKE is one of the most widely used build systems [43-45]. In this context, each configuration
typically modifies a subset of the software’s configuration options. Typically, when users intend
to build multiple configurations, they use a clean build, which builds a software configuration
in a clean environment. For C-based and MaxkE-based artifacts, configurations can be built from
existing and completed configurations’ builds, saving build time and computing resources by
reusing artifacts from previous configurations’ builds [49]. Only part of the source files would be
overwritten when users set a new configuration option. Incremental build systems enable the new
configuration to be built by rebuilding only the artifacts of the source files with the new timestamp.
To the best of our knowledge, this is the first approach that has been proposed to reduce overall
build time by strategically ordering incremental builds for the software configuration set, a set that
includes multiple software configurations.

Example. To illustrate the potential benefits of identifying an efficient order for building multiple
configurations, consider the following example from the SQLite project, and a configuration set
{C1 (disable-libtool-lock, with-pic), C; (enable-debug, with-readline-lib), C5 (disable-amalgamation,
with-readline-lib)}. The traditional clean build has a total build time of 348.34s. Assume that we
incrementally build all configurations, and execute sequentially with Order 1 [C;—C,—Cs], the
overall build time is 236.12s. When changing the build order to Order 2 [C;—Cy—C1], the overall
build time drops down to 170.64s. The total build time for Order 2 is 65.48s shorter than the total
build time for Order 1. This example shows the advantage of ordering the configuration set in
incremental builds. Such an efficient order can significantly reduce the overall build time of the
configuration set [48].

Our core strategy is to order incremental builds to accelerate the build of the overall configuration
set of C programs built by GNU MAKE, one of the most widely used build systems [43-45]. The
rationale behind this is that build time can be reduced by incremental builds if the build declarations
are similar for two configurations. Specifically, we use a lightweight static analysis of the build
declarations to analyze similarities in software configurations and predict their build sizes, based on
which to create an efficient order of incremental builds. The similarity-based ordering of incremental

1A community-led testing system to ensure the quality, stability, and long-term maintenance of the Linux kernel.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

Towards Efficient Build Ordering for Incremental Builds with Multiple Configurations 67:3

Configurations Set:

{C, [disable-libtool-lock, with-pic], C, [enable-debug, with-readline-lib], C; [disable-amalgamation, with-readline-lib]
Order 1: C,»C,> C; Order 2: C;»C> C, BuddiPlanner: C,»C > C;
C,: 153.54s C,: 0.04s C;:82.54s C;:151.71s C,: 18.89s C;: 0.04s C,:38.95s C;:0.04s C;: 82.64s
Build Time: Build Time: Build Time: 121.63s

Fig. 1. Build Time Resulting from Various Build Orders on the SQLite Project

builds in software configurations can reuse artifacts from previous builds, and thus reduce the
building workload.

We propose an approach—called BUDDI and implemented it as a tool called BuddiPlanner—to
create a build order. BUDDI uses a distance metric to measure how similar the build targets and
the build commands are between configurations. To quantitatively describe the distance, BUDDI
analyzes the build scripts generated by each software configuration, the build targets, and the build
commands between the two configurations. The closer the distances between the configurations,
the more similar and less conflicting they are in the context of incremental builds. Moreover, BUDDI
estimates the build size of each configuration, as we found that it is more efficient to start with the
build of the smallest sized one among the configuration sets. This enables the reuse of artifacts
from as many previous builds as possible. Overall, BUDDI is a best-effort approach based on an
intuitive idea that works well in practice. BUDDI only creates a build order, it does not participate
in the actual build. If the incremental build systems and build scripts are error-free, BUDDI does
not result in incorrect builds.

We evaluated BuddiPlanner using 20 popular, active, and widely used projects. We selected the
projects used in previous software configuration studies [49] and a further 15 configurable projects.
These projects are C-based and GNU MaKE-based with various sizes (large (>5000) / medium
(500-5000) / small (<500) number of files). For comparison, we implemented a best-effort baseline
that randomly selects 10 build orders based on 20 randomly generated configurations, resulting
in 200 build orders for the 20 projects (cf. Section 4.2). The evaluation results show that the order
created by BuddiPlanner outperforms 96.5% (193/200) of the random orders in terms of build time,
with an average reduction in build time of 305.94s (26%), with a median saving of 64.88s (28%).
As for extensibility, BuddiPlanner can be extended to other build systems, such as Gradle [21],
Ninja [46], and Bazel [7]. BuddiPlanner shows the potential to relieve the burden of practitioners
dealing with long build times and the allocation of computing resources required when building
with multiple software configurations. The main contributions of this paper are as follows.

e We propose an approach—called BUDDI—to order incremental builds to accelerate the building
of the overall configuration set. This approach utilizes lightweight static analysis of build
targets and commands in build declarations to examine configuration similarities, predict
build sizes, and generate efficient orders for incremental builds.

e We implement BUDDI as an automated ordering tool called BuddiPlanner.

e We evaluate BUDDI on 20 projects. The order created by BUDDI outperforms the random
orders by 96.5% in terms of build time, saving the build time of 305.94s (26%) on average, with
a median saving of 64.88s (28%).

2 MOTIVATING EXAMPLE

In this section, we further explain how build orders affect build times (or result in different build
times), as well as how BUDDI derives efficient orders for incremental builds using the motivating
example presented in Section 1.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

67:4 Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger

C,; ["mksourceid", ~C, ["mksourceid”", C; ["mksourceid", "sqlite3.h", C, "sqlite3": [

"sqlite3.h", "sqlite3.h", "keywordhash.h", "lemon", "parse.c",

"-DSQLITE_THREADSAFE=1",

"keywordhash.h", "keywordhash.h", "parse.h", "opcodes.h", "alter.lo", DS o

"lemon'", "lemon'", vanalyze Jo", "attach.Jo", "auth.lo", -DSQLITE_HAVE_ZLIB=1",

" " " " " WO won " "-DHAVE_READLINE=0",

parse.c", parse.c", backup.lo", "bitvec.lo", "btmutex.lo",

" " " " " W "o " "-DHAVE_EDITLINE=0",

parse.h", parse.h", btree.lo", "build.lo", "callback.lo", e S e

" " " " " "o won " -DSQLITE_ENABLE_FTS4",

opcodes.h", opcodes.h", complete.lo", "ctime.lo", "date.lo", . - - N

"opcodes.c" "opcodes.c" "dbpage.lo", "dbstat.lo", "delete.lo" -DSQLITE_ENABLE_RTREE",

" P w " w " " e "o W "-DSQLITE_ENABLE STMTVTAB",

shelleh shellct expriopifantlobikeylol) "_DSQLITE_ENABLE_DBPAGE_VTAB"

"ftsSparse.c", "ftsSparse.c", "fts3.10", "fts3_aux.lo", "fts3_expr.lo", - - - ’

"ftsSparse.h", "ftsSparse.h", "fts3_hash.lo", “ﬂs3_1cu.}o", DSQLITE ENABLE DBSTAT VTAB',

"fts5.c", "fts5.c", "fts3_porter.lo", "fts3_snippet.lo", - - -

".target_source", ".target_source", "fts3_tokenizer.lo", C, "sqlite3": [

"sqlite3.c", "sqlite3.c", "fts3_tokenizerl.lo", -

"sqlite3.1o", "sqlite3.1o", "fts3_tokenize_vtab.lo", "fts3_unicode.lo", "'()() 2 .

"libsqlite3.1a", "libsqlite3.1a", "fis3_unicode2.lo", "fts3_write.lo", "-DSQLITE_THREADSAFE=I",

"sqlite3"] "sqlite3"] "fisSparse.c”, ...] -DSQLITE_HAVE_ZLIB=1",
"-DHAVE_READLINE=0",

Distance: “-DHAVE_EDITLINE=0, ...]

C,-C,:206 C,—Cy2740 C,—Cy: 2832

Fig. 2. Build Targets and Distance from Three Configura- Fig. 3. Build Commands from The Same Target
tions of C1 and Cs. Blue Font Indicates Different Com-
mands of Two Configurations

Incremental builds of software configurations. The plethora of possible software configurations
poses great challenges for software development and maintenance. SQLite has up to 37 configuration
options, which means that it can be built with 2%” configurations in theory. In practice, this number
may not be reached as some options cannot coexist. The order of builds between configurations
affects the overall efficiency of the software configuration set build. As shown in Fig. 1, in a
configuration set with three configurations, the difference in terms of build time between the two
build orders is 65.48s (236.12s — 170.64s = 65.48s) on our machine. Each software configuration
contains the build targets to be built and the build commands for how to build those targets. When
the build order is C;—C; or C;—Cy, the time consumption of building the latter configuration is
only 0.04s.

As shown in Fig. 2, build targets are included in three configurations. C; and C; have the same
targets. Therefore, when the build order is C;—C; or C;—C;, the latter configuration can always
be built quickly. The incremental build systems use a Makefile to record a set of obsolete files for
rebuilding in the next build. Incremental builds are designed to rebuild only the necessary targets.
The incremental build systems check whether build targets and their prerequisites are up to date
based on their timestamps. The targets remain the same if they use the same compilation flags.
The new configuration updates the rules in the Makefile, and the pre-processing also updates the
timestamps of files (including targets and prerequisites), causing the incremental build systems
to rebuild the targets. Thus, when two configurations share common targets (e.g., C; and C),
incremental builds can be used to quickly build the latter configuration.

Static analysis of configurations. BUDDI performs two static analyses of configurations: the first
analyzes the distance between all pairs of configurations, and the second predicts the configuration
build size (in terms of build time).

To analyze the distance, BUDDI obtains the build targets and the build commands of all con-
figurations through a lightweight static analysis. BUDDI instructs GNU Make to output all build
targets and build commands by executing the command (make -n -debug=basic). Fig. 1 shows
an example of the build target and build commands obtained by BUDDI. BUDDI predicts the build
size of the configuration by the number of build targets and build commands. It identifies the
compilation optimization commands (e.g., gcc -0, gcc -02), which are given different weights
(e.g., gcc -00 for 1, gcc -0 for 2, gcc -02 for 3, gcc -03 for 4, the default is 2). A higher weight

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

Towards Efficient Build Ordering for Incremental Builds with Multiple Configurations 67:5

Step (1) : Executing the configurations set Step (2): Executing the make command ~ Step (3): Calculating distance and predicting Step (4): Ordering incremental builds
and generate Makefiles and parsing user-declaration build size based on user-declaration based on distance and size

Input: Configurations set Input: Makefiles Intput: User-declaration Input: Build Size and Distance

i GNU Make Output: Predicting Build Size
' @ @ :
' U' Make Must remake target oSz _, o
£ £ = } Min size)
: = Command Build Command Vocrio ! o size 1% Build
| 0 Successfully remade target. Vo100) ‘onfiguration 2
1
H

C

............... HEC S R (U

—————————————————————————— i Static mmme—m——a

alys Caleulating Distance o B

¢ onﬁgura[mn Analyse Distance C1 Min Distance ~ C; 27 Build
Options User-declaration _ - _____ H ! of C, l
C

__ Makefile Cl ___ [I, Distance C3

Build Build
! Declaration Commands
'

f
1
) ! 1
) H
i ' MakefileC2 . | o o
\ ! i | I ! Min Distance > «d Bui
! i S — N _ DisanceC2 .} 200 ! o 1 3% Build
H 1 ' i (R of Cy
H 0
! 1 1
H
L 1

Output: Makefiles Output: User-declaration Output: Build Size and Distance Output: Order C, " C; "> C,

Fig. 4. Overview of BUDDI. The Dotted Line Represents the Set

indicates a higher cost, as higher levels of optimization result in longer compilation times (gcc
-00 is the shortest) [19]. For example, C3 has the most build targets (cf Fig. 2), but its build time is
comparable to that of C; (cf: Fig. 1). C; has some time-consuming build targets, such as “sqlite3.10”,
which takes 26.31s to build.

Ordering incremental builds. BUDDI calculates the distance of the configuration from the build
targets and the build commands. For example, C; and C; share identical build targets but different
build commands for some of the targets. Next, BUDDI records the sum of the different commands
as the distance between C; and C,. C; and Cs have different build targets and build commands.
BUDDI records the sum of all the differences as the distance (cf. Fig. 2). Finally, BUDDI selects the
configuration that is closest to the pre-order configuration for each iteration.

BUDDI starts from the configuration with the smallest build size when ordering configurations.
As shown in Fig. 3, C; has fewer and faster build commands than C;, and BUDDI chooses C; as the
start of the build order. The intuition is that building from large size to small size may waste the
work built in the previous order. For example, since the build size of C; is larger than C,, the entire
build time of the order C3—C; is 170.60s but the build time of C;—Cj3 is 65.41s. Therefore, BUDDI
selects C, as the start of the order, then C; as the next build based on distance, and finally Cs to
complete the order (cf. Fig. 1).

3 APPROACH

To accelerate the build of software configuration sets, we propose an approach called BUDDI
with the goal of minimizing the number of redundant compilations of artifacts in the context of
incremental builds. BUDDI is able to significantly reduce the overall build time of the software
configuration set by leveraging the distance between the build scripts generated by the software
configurations for ordering incremental builds efficiently. BUDDI analyzes the build targets and
the build commands in build scripts, and then predicts the build size (specifically, in terms of build
time) based on the number of build targets and build commands. The build orders by BUDDI always
start from the smallest build-sized configuration, which minimizes redundant artifact compilations.
BUDDI then calculates the distance in build targets and build commands between configurations
and gives priority to building the configuration with the smallest distance. In general, the more
differences between build targets and build commands in Makefiles, the greater the distance between
them. In other words, a greater distance means that it would be harder to reuse compiled artifacts.
This allows for a more efficient build by maximizing the reuse of compiled artifacts. BUDDI requires
only static analysis of build scripts and achieves build acceleration by reusing artifacts wherever

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

67:6 Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger

possible. As long as the software configurations and build scripts are not changed, our analysis of
ordering incremental builds only needs to be performed once.

3.1 Overview

An overview of BUDDI is provided in Fig. 4. It takes a software configuration set (including multiple
software configurations) and first generates the corresponding Makefiles of each configuration (step
(D). The Makefile specifies the building of the software configurations. Next, BUDDI instructs GNU
MAKE to output the build targets and build commands declared by the user in the build scripts using
the make command (step 2)). Note that BUDDI eschews executing building during this step. BUDDI
measures the distance between Makefiles by analyzing the build targets and the build commands
to be executed when each Makefile is executed (step (3)); BUDDI also predicts the build size by the
build targets and build commands. BUDDI’s order always starts with the smallest build size for
the overall software configuration. The strategy aims to improve build efficiency by avoiding the
difficulty of reusing compiled artifacts for smaller configurations after the larger ones have been
built. The configurations closest to the current built configuration are then selected to create the
build order (step @). Our ordering of incremental builds has a low cost (based on lightweight static
analysis) and can effectively reduce the overall build time of the configuration set. We propose a
best-effort approach though it is not guaranteed to select the most efficient incremental build order.

3.2 Declaration Distance and Build Size

This section explains how BUDDI calculates the build distance and predicts the build size (steps
@ to B). Our core idea is to order incremental builds using build declarations distances between
configurations. BUDDI determines the build distance and predicts the build size based on the target
to be built and the specific build commands to be configured. This ensures that BUDDI can always
build from the smallest configuration and build distance.

BUDDI considers similar declarations to be more suitable for incremental builds. Hence, the
closer Makefiles are to each other, the more suitable they are for the incremental build. The build
declaration describes the targets to be built by each Makefile and the details of their execution.
After the configuration options have been applied, BUDDI can obtain the build declaration for each
Makefile. It uses the GNU MAKE function (nake -n —debug=basic) to simulate the build of all
commands and printing of the build commands. BUDDI then parses the GNU MAKE output for
the build targets and build commands (cf. an example output in Fig. 5). The first line of the figure
indicates the current target to be built “sqlite3.10”. The second line indicates the build commands and
prerequisites used to build “sqlite3.10”. The third line indicates that the target has been successfully
built. BUDDI reads all output from GNU MAKE and finds all build targets and build commands by
employing pattern matching. Although we focus on Make-based projects in this work, other build
systems provide similar functionality to simulate builds. For example, Gradle provides an API [23]
to achieve declared inputs/outputs of every task and declared dependencies of every task (Gradle
programmers assemble build logic in a set of tasks [22]). Thus, BUDDI could be easily extended to
these other build systems, such as Gradle, Ninja, and Bazel.

BUDDI uses Algorithm 1 to calculate the distance by comparing the build declaration in two
Makefiles. First, BUDDI counts all the build targets and prerequisites in “MakefileB” (line 4). This
simplifies the calculation of the number of targets and prerequisites in “MakefileB” that differ from
those in “MakefileA”. Then, if the prerequisites and build commands of targets in two Makefiles are
the same, their distance is 0. If they are not the same at any point, their distance is the sum of the
targets and prerequisites (lines 5-18).

Definition 1: Declaration Distance (DIS). DIS refers to the sum of differences between
Makefiles.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

Towards Efficient Build Ordering for Incremental Builds with Multiple Configurations 67:7

1. Must remake target "sqlite3.10".
2. Jlibtool --mode=compile --tag=CC gcc Cl --disable-opencl --disable-thread ... C2--enable-static ...
-g-02 -DSQLITE_OS_UNIX=I -I. -

I./sqlite/ext/async -1./sqlite/ext/session - 1""264""1[l"COmmOH/OSdCP-O": [1"00“1'“0"/05‘1@!’-0"1 [
L//sqlite/ext/userauth - 2. "-fomit-frame-pointer", 2. "-fomit-frame-pointer", 2. "-fPIC",
D_HAVE_SQLITE_CONFIG_H - 3. "-fno-tree-vectorize", 3. "-fno-tree-vectorize", 3. "-fno-tree-vectorize",
DBUILD sqlite -DNDEBUG - 4. "-fvisibility=hidden", 4. "-fvisibility=hidden", 4. "-fvisibility=hidden",
DSQLITE THREADSAFE=1 - 5.l 5. "<, 5. "-DX264_API_EXPORTS",
) 6. "x264.c", 6. "common/osdep.c", 6. "<c",

DSQLITE_ENABLE MATH_FUNCTI 7 non, 7 o L)
ONS -DSQLITE_HAVE ZLIB=1 - 8. "x264.0"], 8. "common/osdep.o"], g R
DSQLITE_TEMP_STORE=1 -c 9. "common/osdep.o" 1,
sqlite3.c : o : :

3. Successfully remade target file DIS = len(dlf_ferint tar}ge_t) +21en (deps in different target) + len (different deps in
"sqlite3.lo". same target) =1 + 8 +3 =1

Fig. 5. Build Declaration and Command in Fig. 6. Build Declaration Distance between Two Makefiles
SQLite Peoject

DIS = TargetDIS + PresDIS (1)

DIS measures the distance between Makefiles and consists of TargetDIS and PresDIS. TargetDIS
describes different build targets between two configurations. PresDIS describes the same build
target (with the same target name) between two configurations but with different prerequisites.
Note that the difference is only calculated with the name of the targets. The reason is that in a
Makefile, the targets and prerequisites are a set of strings. We do not execute the build to recognize
the differences between the targets from other perspectives (e.g., binary).

Definition 2: TargetDIS. TargetDIS refers to the sum of different targets in two Makefiles.

Definition 3: PresDIS. PresDIS refers to the sum of differences in prerequisites (Pres) within
the same targets.

TargetSum
TargetDIS = Z Pres 2)
n=1
where: TargetSum = Targets € {Declaration A-Declaration B}
PresDIS = CUP- CAP 3)

where:

CUP = Target’s Pres A U Target’s Pres B

CAP = Target’s Pres B N Target’s Pres A

Target € (Declaration A N Declaration B)

Fig. 6 illustrates how the DIS between the two Makefiles (C1 and C2 in the figure) is calculated.
BUDDI compares the build targets in the Makefiles generated by the two software configurations.
For two different build targets in the Makefile, such as “x264.0” in the figure, the distance for each
target is added to 1, and the number of build commands for the build target is counted as distances.
For example, all the build commands for “x264.0” in the figure have 8 lines, so the distance is
increased by 8. For the same build target, the build commands are compared and the distance is
increased by 1 for each different build command. For example, both Makefiles in the figure have
the build target “common/osdep.o”, but there is a difference of 3 build commands, so the distance is
added by 3. Therefore, the DISis 12 (1 + 8 + 3 = 12).

3.3 Ordering Builds

In this section, we elaborate how to use the build targets and build commands (obtained in Sec-
tion 3.2) to predict the build size (Algorithm 2) and order the incremental builds (step @) by size
and distance (Algorithm 3).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

67:8 Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger

First build configuration. BUDDI uses Algorithm 2 to select the first configuration to build (15
build, start of the order) and Algorithm 3 to order the subsequent orders. At the beginning, the
1% build in our approach will be a clean build. BUDDI considers that the 15! build should be the
smallest build size (in terms of Build time). Starting from the smallest configuration is intuitive, as
it avoids the potential waste of the greatest amount of compiled artifacts. Starting with a larger
build size may result in most of the compiled artifacts not being usable when building smaller
configurations (cf. Scetion 4.5). Algorithm 2 outlines how BUDDI predicts the configuration with
the smallest build size. BUDDI predicts the build size for each configuration by the number of
build targets and the build commands. The more build targets and the more complex the build
commands, the bigger the build size. BUDDI counts the number of build targets and prerequisites
included in the build script for each configuration (lines 5-8). Next, BUDDI checks that the build
commands (e.g., gcc -0, gcc -02) have specified common compilation optimization options (lines
9-15). BUDDI identifies the compilation optimization commands, which are assigned different
weights (e.g., gcc -00 for 1, gcc -0 for 2, gcc -02 for 3, gcc -03 for 4, with 2 being the default).

Algorithm 1 Calculating Build Declaration Dis- Algorithm 2 Predicting 1% Build of Configura-

tance tion
1: INPUT: MakefilelistA, MakefilelistB, CommandA, CommandB 1: INPUT: DIS[]
2: OUTPUT: DIS 2: OUTPUT: FirstConfig
3: count = 0, countB = 0 3: lenmakefile = 0, dismin = 0
4: ListlenB = Sum(MakefilelistB.target) + Sum (Make- 4: for for Makefileitem in DIS: do
filelistB.target.deps) 5: for targets, deps in Makefileitem.items() do
5: for targets, deps in MakefilelistA.items() do 6: lenmakefile = lenmakefile+len(deps)+1
6: if targets in MakefilelistB then 7 countB = countB+len(deps)
7: if deps not in MakefilelistB[target] then 8: for dep in deps do
8: count = count + Sum(deps) 9: if GCC compilation optimization not in dep then
9: else if target in CommandB && CommandA[target] = 10: lenmakefile = lenmakefile - weights
CommandB[target] then 11: end if
10: countB = countB + Sum(deps) 12: end for
11: else 13: if dismin == 0 then
12: count = count + len(target) + len(deps) 14: dismin = lenmakefile
13: end if 15: firstonfig = Makefileitem
14: else 16: else if dismin > lenmakefile then
15: count = count + len(target) + len(deps) 17: dismin = lenmakefile
16: end if 18: firstonfig = Makefileitem
17: end for 19: end if
18: DIS = absolute(ListlenB - countB) + count 20: end for
19: return DIS 21: end for
22: return firstonfig

Algorithm 3 Ordering Incremental Builds of Configurations

1: INPUT: firstconfig, DIS[] 20: else if maxdis > dis[mindis] then
2: OUTPUT: buildorder([] 21: maxdis = dis[mindis]
3: buildorder = [] 22: nextconfig = config
4: buildorder[] « firstconfig 23: else if i==len (dislist) - 2 then
5: for dislist in Dis[] do 24: if dis[mindis] == maxdis and config not in buil-
6: nextconfig = Second Min DIS in dislist[] dorder[] then
7: if firstconfig not in buildorder[] then 25: nextconfig = config
8: buildorder[] « nextconfig 26: end if
9: else 27: end if
10: mindis = Min DIS in dislist[] 28: end for
11: maxdis = Max DIS in dislist[] 29: buildorder[] « nextconfig
12: end if 30: end for
13: for config, dis in dislist.items() do 31: Function SearchingConfig(mindis, buildorder([]):
14: if config in buildorder[] then 32: AllMindisConfig[]«Searching All config dis = mindis
15: continue 33: Sorting AllMindisConfig[] in options similarity with last item
16: end if in buildorder[]
17: if dis[mindis]) == mindis then 34: return config = Max similarity config and not in buildorder([]
18: nextconfig = SearchingConfig(mindis, buildorder([]) 35: return buildorder[]
19: break

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

Towards Efficient Build Ordering for Incremental Builds with Multiple Configurations 67:9

The compilation time is indicated by the weights, the higher the weight value the longer the
compilation time. Finally, after a traversal, BUDDI obtains the software configuration with the
minimum build size (lines 16-25). In Fig. 4, BUDDI predicts the build size of the three build scripts
(C1, C2, C3), and obtains a build size set Size{C1: 120, C2: 100, C3: 110}. From this set, BUDDI can
calculate that the smallest build size is C2, used as the 1%¢ build.

Ordering build. BUDDI uses the 1% build of configuration and distance to order the builds. It
is to find the closest configuration based on the current configuration (as shown in Algorithm 3).
The builds are ordered by traversing the software configuration set once. Specifically, according to
Algorithm 1, BUDDI calculates the distances between all configurations, the distances describe the
difference in build scripts for each configuration. From Algorithm 2, we have obtained the 1% build.
Then, we obtain the 2" build by finding the software configuration that has the smallest distance
to the 1! build (lines 5-8 in Algorithm 3). In addition, the configuration with the smallest distance
may already exist in the build order. Therefore, we need to find the component with the second
smallest distance (lines 9-22). BUDDI considers the similarity of configuration options when the
configurations are at the same distance from the pre-order configuration. Thus, from the alternative
configurations (lines 17-19 and lines 31-34), the configuration whose options have the greatest
overlap with those of the current configurations is selected. When ordering to the last position,
BUDDI adds the configuration that is not yet in the order (lines 23-30).

Fig. 4 illustrates the main steps of generating the build order. The 2" build is identified by finding
the minimum distance from the DIS of the first build. As the C3 in the figure, the 15 build is C2.
Then BUDDI selects the configuration with the smallest distance from C2, i.e. C3. After the ond
build is identified, the minimum distance does not exist in the order identified from the DIS of
the 2" build. By iteratively repeating these steps, BUDDI obtains the build order. As shown in
Fig. 4, having identified C3, BUDDI repeats the previous steps and finds that the configuration
closest to C3 is C2. however, C2 already exists in the order. Then, BUDDI explores the remaining
configurations and finds C1 is optimal for the 3" build.

4 EVALUATION

We implement our approach BUDDI as an automated tool called BuddiPlanner, and evaluate its
effectiveness and efficiency on practical and widely-used configurable software systems.

4.1 Questions

In our evaluation, we sought to answer the subsequent questions (Qs). In addition, we explain the
methodology that was used to answer these questions.

Q1: How effective is BuddiPlanner in creating build orders that can be efficiently compiled?

Goal—The main motivation of BUDDI is to reduce the build time of building multiple software
configurations. Thus, we evaluated this aspect as an effectiveness metric.

Methodology—To answer Q1, we selected 20 mature and important projects. A challenge is
how to select which configurations to build. Ideally, we would have built those configurations
that developers or users build in practice. Thus, we tried to query practitioners about the real
configurations and orders they use (e.g., we asked in the SQLite forum). However, we found it
difficult to obtain a clear response. Thus, we generated a configuration set containing 20 random
configurations on each project. In each configuration set, we compared the whole build time between
the order generated by BuddiPlanner and random orders. In addition, following the guidelines
established by Arcuri and Briand [6], we conducted a Mann-Whitney U-Test to determine the
statistical significance of the differences in terms of build time between BuddiPlanner’s order and
random orders (with alpha = 0.05).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

67:10 Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger

Q2: How efficient is BuddiPlanner?

Goal—This question explores the time consumption of BuddiPlanner on creating an order for a
configuration set.

Methodology—To answer Q2, we evaluated the time consumption of BuddiPlanner on generating
build orders. BuddiPlanner consists of multiple stages, which we instrumented. These include static
analysis, distance calculation, predicting 1% build, and ordering build.

Q3: How effective is BuddiPlanner in creating an order from the largest build size?

Goal—This question explores whether BuddiPlanner’s order of creation from other starting
points is more efficient than an order created from the smallest build size as a starting point.
Different starting points lead to different benefits. While intuitively, as explained above, we think it
is more promising to start from the smallest build size, it may be more efficient to use the largest
build size than the smallest build size, which is with reference to the first product selection from
the maximum number of software features of Al-Hajjaji et al. [3, 4].

Methodology—To answer Q3, we made BuddiPlanner create an order starting from the configu-
ration with the largest build size and compare it to the order starting from the smallest size build.
We also experimented with various heuristic rules (e.g., linking), but have not identified any others
that perform well.

0Q4: How do our experiment decisions (random configurations and random orders) affect
the effectiveness of the evaluation?

Goal—This question explores whether the evaluation methodology in Q1 might make BuddiPlan-
ner’s performance seem higher than it is. The use of random configurations and random orders is
one of the threats to the validity of our evaluation, because they might not be the practical configu-
rations and orders that practitioners likely use. In addition, a single scenario (e.g., experimental
designs in Q1) may make BuddiPlanner perform better than it does.

Methodology—We compare BuddiPlanner’s performance in different scenarios to determine if
it is significantly lower than Q1’s evaluation results. We designed this methodology with reference
to the related work [36]. In Q1, our decisions use a set of 20 random configurations and 10 random
orders. To evaluate Q4, we performed two experiments.

In the first experiment, we used multiple configuration sets and sequential build commands (cf-
Section 4.6.1). For each project, we generated more sets of configurations (four sets). Furthermore,
in order to diversify the evaluation scenarios, we randomly generated five configurations for each
configuration set to distinguish them from the 20 random configurations used in the previous
evaluations. At the same time, to avoid biasing the results by using random orders (used in previous
evaluations), we used sequential order in this evaluation.

In the second experiment, we compared the build efficiency of the BuddiPlanner’s order with
that of all random orders (cf- Section 4.6.2). In previous evaluations, due to computational resource
constraints, we were unable to compare BuddiPlanner’s order to all orders (the number of all build
orders is 20!). Therefore, we evaluate the set of configurations where all orders can be computed.
To avoid biasing the results by using random configurations, we manually selected 4 configurations
in the SQLite project. We compared the order generated by BuddiPlanner with all the orders
(excluding the same order as BuddiPlanner, 4! — 1 = 23) in terms of build time. For the four
manually-selected configurations, we referenced the SQLite compilation documentation [54] and
the Makefile in the Java branch of SQLite [56] to determine which configurations might likely be
built by practitioners/developers: default configuration, debug enabled, all enabled, and all disabled.
Practitioners do not disclose the specific configurations that SQLite employs, and as we have no
access to that information, this is a best-effort approach.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

Towards Efficient Build Ordering for Incremental Builds with Multiple Configurations 67:11

Table 1. Important Information about Subjects

Project Commit/Tag ID ~ Commits/Patch Files Opt. Source Stars
SQLite 3.41.0 25,439 2,232 37 [49] 4.5k
PHP €9195b2 132,970 18,837 168 Self-extracted 36K
tig 06a1b89 2,789 338 11 Self-extracted 11.8k
tinycc d1c1077 3,370 520 29 Self-extracted 1.6k
curl 33ac97e 29,674 6,430 186 [49] 31.2k
x264 32fc5fd 3,104 403 29 [49] -
xterm xterm-368 #368 318 114 [49] -
XZ 0bs8fa31 1,669 1,106 51 [49] -
ck 50299b7 1,665 595 17 Self-extracted 2.2k
lighttpd 140c6e3 5,000 348 59 Self-extracted -
vim 9fcde94 18,011 4,335 71 Self-extracted 32.6k
thrift 0.18.1 6,815 3,059 52 Self-extracted 9.9k
xrdp 0.9.22.1 4,460 463 53 Self-extracted 4.8k
libusb 6bf2db6 1,808 155 25 Self-extracted 4.6k
tmux 4c60afd 10,081 315 17 Self-extracted 30.3k
libsodium 1.0.18 4,217 709 35 Self-extracted 11.1k
fswatch ba411e0 1,366 166 25 Self-extracted 4.7k
goaccess 1.7.2 4,016 132 21 Self-extracted 16.6k
FFmpeg 4.1.11 111,845 7,029 337 Self-extracted 38.3k
ruby 3.2.2 78,732 11,328 70 Self-extracted 20.7k

Opt.: Configuration options #: Patches -: Not hosted on GitHub

4.2 Experimental Settings

Subjects. To answer the questions, we extensively evaluated our approach with 20 selected real-
world projects. We reused all 5 projects used in a previous study on software configurations [49]
plus other 15 well-known, active, and configurable projects to evaluate BuddiPlanner. We selected
the 15 projects by following the two steps. First, we searched Github for C-based and Make-based
projects and ordered them by star count. Next, we inspected the projects based on the order and
manually removed the ones with less than 10 configuration options. We manually analyzed the
total number of configuration options for each project by executing “configure -h”. The projects
selected come from a variety of fields, such as compilers, UNIX editors, interpreters, and multimedia
processors.

The important information about these projects is displayed in Table 1. Each project has a large
number of commits or patches (379-132,970) and offers a variety of configurations (11-337). For
each project, we manually executed the pre-processing commands (e.g., executing autogen.sh) to
generate configurations. The configuration options available for each project were then extracted.

Baseline. We used a limited number of randomly derived configurations as a baseline. Practi-
tioners’ build configurations are not accessible in public. The most closely related work, which
describes an empirical study on software configurations [49], has not proposed an approach that
we could have used as a baseline to order the builds of configurations. Thus, it becomes reasonable
to employ the randomly derived configurations as a best-effort baseline in this study. The projects
have 11-337 configuration options, meaning that they have 2!!-23%" configurations theoretically.
Constrained by computing resources, we randomly generated 20 configurations. Depending on the
20 configurations, up to 20! orders can be generated. Theoretically, the best order (minimum build
time) could be found by running all the orders. However, we generated 20 build orders as a baseline
(20—10), which is an arbitrary but reasonable limit. To generate random configurations, we first
extracted the configurable options for each project. By executing configure -h, we obtained the
configuration options for each project and saved all the options. We then generated 20 random
configurations for each project and performed filtering on these configurations.

Filtering steps. To measure the build time, we first ensured that there were no conflicting config-
uration options in the experimental configuration set, as conflicting configuration options cause

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

67:12 Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger

100% Listing 1 Build Approach

//Begin SQLite configuration set building
//Configuration C9

>>make clean

>>configure --enable-releasemode --with-readline-lib
>>time make

IS IEC NS RN N

1 Building...
§ & & & & > L S & & S & >>93.08866596221924
S U FUSRS \&?\\Q T S Q‘\@&\\'\S’&c@&i“& < //Configuration C13
& © 9 >>configure --enable-debug --with-readline-lib
mDIS ©O0ptions 10 >> time make

11 Building...
12 >>0.02551102638244629

Fig. 7. Similarity of Options and Distance between
Each Configuration

build failures. For instance, in x264, the option “~system-libx264” can not be used together with
“—enable-static”. We checked the configuration options and eliminated conflicting options. For
example, in the case above, we randomly removed one of the two options. To ensure the diversity
of the generated configurations, we calculated the similarity of the configuration options and the
distance between any two configurations. In terms of the similarity of configuration options, we
refer to the percentage of the identical options in all the options in the configuration. As shown in
Fig. 7, the average option similarity is 22% (the median is 21%). A low percentage means that each
configuration has few options in common with others, which indicates the high diversity of the
generated configurations. The distance shows the percentage of each configuration that has the
same build target and build commands as the other configurations in each project. The average
distance is 57% (the median is 55%), which illustrates the differences in the build targets and the
build commands between configurations.

Build approach. To validate and evaluate BuddiPlanner, we followed a common series of steps
for building the project. We first pre-configured the project manually (e.g., executing “autogen.sh”
to generate a “configure”). We then executed configure -h for each project separately to extract
all the configuration options. In addition, to ensure that the build of each software configuration
set is not affected by others, make clean is executed before the software configuration set is built
to ensure that the current environment is clean (in line 3 of Listing 1). We then generate a build
script by completing the configuration with “configure” depending on the order of execution
(in lines 4 and 9) and finally execute time make (in lines 5 and 10). The builds for each software
configuration set can be split into two builds: clean build and incremental build. We use clean
builds to ensure that no other configuration builds are affected. In each configuration set, the first
software configuration to be built actually performs a clean build. After that, each configuration is
built on top of the build of the previous configuration in the order and run make directly (in lines 7
and 12). To eliminate experimental biases resulting from fluctuations in device performance, we
arithmetically averaged the build time for each order by building it three times.

Experiment environment. We carried out the evaluation on a Linux server running Ubuntu 22.04
with an Intel(R) Xeon(R) Platinum 8163 CPU@2.50GHz, 96 cores, and 376GB memory.

4.3 Effectiveness (Q1)

To answer Q1, we followed the build approach in Listing 1 and automatically recorded all build
time. The results of the effectiveness evaluation are shown in Table 2. The columns represent,
from left to right, the name of the project, the item, and the random order count. The data items
include Time, Difference (Dif), and Over (X). Time is the total build time of the configuration set;

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

Towards Efficient Build Ordering for Incremental Builds with Multiple Configurations 67:13

Table 2. Build time (Sec.) of Random Build Orders and BuddiPlanner. Green Blocks Indicate a Speedup, and
Orange Blocks Indicate a Slowdown. The Bold Project Name Means That the Difference in Effectiveness Is
Statistically Significant

Project Item Ours (e} 0, 03 Oy Os O 0Oy Og (o2 O19
Time 122.46 236.46 237.13 237.42 236.68 122.45 237.03 238.92 236.25 236.65 236.33
SQLite Dif - 114.00 114.67 114.96 114.22 -0.01 114.57 116.46 113.79 114.19 113.87
Over (x) - 48% 48% 48% 48% 0% 48% 49% 48% 48% 48%
Time 540.26 869.26 841.69 987.03 1063.85 531.86 1064.95 1031.75 1063.87 959.66 1063.51
PHP Dif - 329.00 301.43 446.77 523.59 -8.40 524.69 491.49 523.61 419.40 523.25
Over (x) - 38% 36% 45% 49% -2% 49% 48% 49% 44% 49%
Time 69.36 136.47 136.42 149.63 149.75 109.87 136.51 136.25 109.44 136.43 126.30
tig Dif - 67.11 67.06 80.27 80.39 40.51 67.15 66.89 40.08 67.07 56.94
Over (x) - 49% 49% 54% 54% 37% 49% 49% 37% 49% 45%
Time 309.78 449.85 460.02 448.22 344.36 436.55 469.73 461.01 462.35 470.24 448.75
tinyce Dif - 140.07 150.24 138.44 34.58 126.77 159.95 151.23 152.57 160.46 138.97
Over (x) - 31% 33% 31% 10% 29% 34% 33% 33% 34% 31%
Time 1,004.32 1,156.41 1,025.05 980.17 1,053.40 1,195.54 1,052.59 1,054.10 1,053.10 1,138.61 998.31
curl Dif - 152.09 20.73 -24.15 49.08 191.22 48.27 49.78 48.78 134.29 -6.01
Over (x) - 13% 2% -2% 5% 16% 5% 5% 5% 12% -1%
Time 2,452.79 2,800.52 2,936.82 2,461.91 2,474.24 2,538.17 2,881.52 3,633.40 2,595.50 2,513.43 2,506.73
x264 Dif - 347.73 484.03 9.12 2145 85.38 428.73 1180.61 142.71 60.64 53.94
Over (x) - 12% 16% 0% 1% 3% 15% 32% 5% 2% 2%
Time 360.59 408.62 408.62 408.63 384.75 408.42 432.51 408.33 432.13 426.17 408.55
xterm Dif - 43.33 43.33 43.34 19.46 43.13 67.22 43.04 66.84 60.88 43.26
Over (x) - 11% 11% 11% 5% 11% 16% 11% 15% 14% 11%
Time 289.17 451.19 436.40 410.42 445.17 409.17 484.61 489.64 524.97 329.63 447.13
XZ Dif - 255.31 240.52 214.54 249.29 213.29 288.73 293.76 329.09 133.75 251.25
Over (x) - 57% 55% 52% 56% 52% 60% 60% 63% 41% 56%
Time 20.53 21.25 23.18 23.29 21.20 23.09 21.27 21.05 21.06 23.04 21.10
ck Dif - 0.72 2.65 2.76 0.67 2.56 0.74 0.52 0.53 2.51 0.57
Over (x) - 3% 11% 12% 3% 11% 3% 2% 3% 11% 3%
Time 510.02 507.09 505.80 510.49 559.33 556.96 559.16 560.44 560.77 558.41 509.55
lighttpd Dif - -2.93 -4.22 0.47 49.31 46.94 49.14 50.42 50.75 48.39 -0.47
Over (X) - -1% -1% 0% 9% 8% 9% 9% 9% 9% 0%
Time 956.53 3,103.11 2,975.67 2,604.68 2,791.81 2,979.82 2,978.79 3,168.03 2,981.30 2,793.22 2,791.51
vim Dif 2146.58 2019.14 1648.15 1835.28 2023.29 2022.26 2211.5 2024.77 1836.69 1834.98
Over (x) 69% 68% 63% 66% 68% 68% 70% 68% 66% 66%
Time 869.00 882.75 877.26 877.18 877.57 877.40 877.30 877.07 877.47 877.67 876.99
thrift Dif - 13.75 8.26 8.18 8.57 8.40 8.30 8.07 8.47 8.67 7.99
Over (x) - 2% 1% 1% 1% 1% 1% 1% 1% 1% 1%
Time 133.47 151.55 144.97 135.27 166.78 151.39 148.82 178.18 167.09 166.62 149.52
xrdp Dif 18.08 11.5 1.8 BEKI 17.92 15.35 44.71 33.62 33.15 16.05
Over (x) 12% 8% 1% 20% 12% 10% 25% 20% 20% 11%
Time 109.50 125.63 120.35 127.53 128.18 111.98 111.66 127.36 124.81 119.43 134.81
libusb Dif - 16.13 10.85 18.03 18.68 2.48 2.16 17.86 15.31 9.93 2531
Over (x) - 13% 9% 14% 15% 2% 2% 14% 12% 8% 19%
Time 40.58 130.48 118.84 188.23 105.44 50.74 48.47 45.49 49.10 49.69 76.72
tmux Dif - 89.90 78.26 147.65 64.86 10.16 7.89 491 8.52 9.11 36.14
Over (x) - 69% 66% 78% 62% 20% 16% 11% 17% 18% 47%
Time 95.60 143.16 168.74 154.96 152.16 160.85 161.98 173.48 127.23 131.42 147.86
libsodium Dif - 47.56 73.14 59.36 56.56 65.25 66.38 77.88 31.63 35.82 52.26
Over (x) - 33% 43% 38% 37% 41% 41% 45% 25% 27% 35%
Time 175.21 208.77 175.64 279.14 232.15 249.38 233.20 213.32 257.64 252.51 324.44
fswatch Dif - 33.56 0.43 103.93 56.94 74.17 57.99 38.11 82.43 77.30 149.23
Over (x) - 16% 0% 37% 25% 30% 25% 18% 32% 31% 46%
Time 83.32 117.76 166.83 150.78 138.68 137.79 119.33 151.21 125.81 105.03 94.79
goaccess Dif 34.44 83.51 67.46 55.36 54.47 36.01 67.89 42.49 21.71 11.47
Over (x) 29% 50% 45% 40% 40% 30% 45% 34% 21% 12%
Time 9,966.47 10,842.39 10,703.52 10,921.17 10,956.59 10,829.22 10,872.89 10,855.23 10,719.75 10,842.70 10,845.78
FFmpeg Dif 875.93 737.05 954.70 990.12 862.75 906.42 888.77 753.29 876.23 879.31
Over (x) 8% 7% 9% 9% 8% 8% 8% 7% 8% 8%
Time 2,622.36 5,257.42 4,109.11 4,456.04 2,905.56 3,983.89 4,690.04 4,958.50 4,146.59 4,909.35 3,228.10
ruby Dif - 2,635.06 1,486.75 1,833.68 283.20 1,361.53 2,067.68 2,336.14 1,524.23 2,286.99 605.74
Over (x) - 50% 36% 41% 10% 34% 44% 47% 37% 47% 19%

O: Order. Dif: Difference. U-T: Mann-Whitney U-Test value

Dif is the difference between the build time of BuddiPlanner’s order and random orders; Over (X)
is the ratio of Dif to Time (Dif / Time), indicating efficiency. Specifically, in project SQLite the total
build time for BuddiPlanner is 122.46s and the build time for the randomly generated build order

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

67:14 Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger

100% 100%
90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

@« <~‘“ o &

o e

90% o
80% * — -

£ 0% o ° e ** °
60% 1 — .

8 s0% —% y 0.6859;:(;_33_151;x+0.4783
40% . 1)
30% e

°
20%
10%
%&\\083 »\\e,.\\\dgc, §: S
Fig. 8. The Percentage of BuddiPlanner’s Order Fig. 9. Regression Results for Average of Distance

o S (°\ & \;q\’ \(\ Gb\ & N\,‘N v ‘0* 0% 10% 20% 30% 40% 50% 60% 70% 80%
o & &< Average of Distance and Options
Faster Than Random Orders in Per Project and Options and Build Acceleration (BuddiPlanner /
Clean Build)

Build Acceleration

¥

(0y) is 237.75s. The Dif is 114.00s (236.46s — 122.46s). Over (X) is 48% (114.00s/236.46s). Time of
BuddiPlanner contains the time on ordering.

Results. We observe that the order created by BuddiPlanner is faster than 96.5% (193/200) of the
random orders in terms of build time. The average build time is reduced by 8.87s (1%)-1960.26s
(67%). The BuddiPlanner’s order is able to save on average 305.94s (26%) of the random orders,
with a median saving of 64.88s (28%). In Fig. 8, we count the percentage of each project in which
BuddiPlanner’s order is more efficient than random orders in terms of build time. Specifically,
BuddiPlanner creates a build order that outperforms all random orders in up to 16 projects. Bud-
diPlanner creates build orders that effectively reduce the build time. For example, in large-scale
projects, such as vim and ruby, BuddiPlanner saves up to 1960.26s (67%) and 1642.1s (36%) on
average over the random orders. In small-scale projects, e.g., SQLite and tig, BuddiPlanner creates
an order with an average reduction of 103.07s (43%) and 63.35s (47%) over the random orders.

Interpretation. The order created by BuddiPlanner reuses the artifacts built in the pre-order
to a high extent, which makes the build more efficient than random orders. BuddiPlanner takes
into account the distance between configurations and the similarity of configuration options.
BuddiPlanner prioritizes the configuration closest to the pre-order build, and if there is an equal
distance, it selects the configuration with the most similar configuration options, ensuring that it
builds the configuration closest to the current configuration every time. As shown in Fig. 9, the
distance and the options of the software configuration also show a positive correlation trend i.e.
build acceleration, with the closer the distance and options the better the acceleration. For thrift,
the order created by BuddiPlanner is only 7.99s-13.75s faster than random orders. This is because
incremental builds can effectively accelerate builds between configurations. When configurations
are close in terms of distance, using even a random order is effective in speeding up the build,
which limits the use of BuddiPlanner.

Answer to Q1: The order created by BuddiPlanner outperforms 193 out of 200 random orders in terms
of build time with a reduction in the build time of 8.87s (1%)-1960.26s (67%), which demonstrates the
effectiveness of BuddiPlanner.

4.4 Efficiency (Q2)

To evaluate the efficiency of BuddiPlanner, we further measured the additional overheads associated
with using BuddiPlanner (Q2). The evaluation results are shown in Table 3. Each column in the
table respectively indicates the time consumption of statically analyzing the build targets and build
commands, calculating the distance between configurations, predicting the build size to calculate
1% build, ordering incremental builds, and the sum of the above.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

Towards Efficient Build Ordering for Incremental Builds with Multiple Configurations 67:15

Table 3. Time-consumption (Sec.) of Ordering Build for Each Project

Projects Command! Static Analysis DIS Calculation 1% Build Ordering Sum Sum Build? %>
SQLite 0.81 0.18 0.29 0.03 0.01 1.32 122.46 1.1%
PHP 0.08 0.78 0.69 0.08 0.01 1.65 540.26 0.3%
tig 1.81 0.53 0.46 0.05 0.01 2.86 69.36 4.1%
tinycc 2.08 0.31 0.26 0.02 0.01 2.69 309.78 0.9%
curl 17.78 2.67 3.51 0.45 0.01 24.42 856.94 2.8%
X264 54.73 0.01 0.40 0.01 0.01 55.16 2,452.79 2.2%
xterm 0.22 0.01 0.18 0.01 0.01 0.44 360.59 0.1%
Xz 2.55 1.37 1.52 0.21 0.02 5.65 289.17 2.0%
ck 0.43 0.19 0.24 0.02 0.03 0.92 20.53 4.5%
lighttpd 6.35 1.70 1.53 0.23 0.01 9.82 510.02 1.9%
vim 16.45 1.49 3.50 0.20 0.06 21.70 956.53 2.3%
thrift 4.97 0.57 0.51 0.06 0.05 6.16 869.00 0.7%
xrdp 2.79 0.40 0.29 0.04 0.01 3.53 133.47 2.6%
libusb 1.59 0.28 0.22 0.02 0.01 2.12 109.50 1.9%
tmux 2.30 0.02 0.10 0.00 0.06 2.49 40.58 6.1%
libsodium 5.44 2.38 3.00 0.43 0.01 11.27 95.60 11.8%
fswatch 3.58 0.59 0.53 0.04 0.02 4.76 175.21 2.7%
goaccess 2.34 0.57 0.43 0.05 0.01 3.41 83.32 4.1%
FFmpeg 20.63 17.58 32.23 4.43 0.01 74.88 9,966.47 0.8%
ruby 307.83 6.60 9.06 1.21 0.01 32471 2,622.36 12.4%

1: Time of execution command make -n —debug=basic 2:Sum build time consumption of BuddiPlanner’s order 3, Taking up build time

Results. From Table 3, we observe that BuddiPlanner orders incremental builds quickly (0.44s—
324.72s) on all the projects. It takes a short time in static analysis (0.01s-17.28s), distance calculation
(0.01s-32.23s), 1%* build (0.01s-4.43s) and ordering incremental builds (0.01s-0.06s). The most time-
consuming stage of BuddiPlanner is the simulation executing the build (make -n -debug=basic,
0.08s for PHP, 307.83s for ruby). It requires this stage to determine which targets need to be
compiled under the current configuration. However, considering that the build order only needs
to be executed once if the software configuration does not change. For example, the changes do
not involve pre-processor directives and Makefile, which indicates that the time consumption of
ordering is acceptable.

Answer to Q2: The extra overheads required by BuddiPlanner lie in 0.44s-324.72s over the 20 projects, which
demonstrates the efficiency of BuddiPlanner.

4.5 Efficiency of the Order From the Largest Build Size (Q3)

In this section, we evaluate the build efficiency of creating a build order from the largest build size,
for which we expect a lower efficiency as compared to the smallest build size. We compared the
build times of build orders created by BuddiPlanner from the largest build size and the smallest
build size. Each build is executed three times.

Results. Fig. 10 shows the results of our evaluation. On all projects, BuddiPlanner creates a build
order in which the 1% build with the smallest build size is preferable to a build order in which the
1% build with the largest build size. The smallest build size as 1°* build of order was reduced by an
average of 160.23s (16%) compared to the order in which the 1% build is with the largest build size,
with a median saving of 33.99s (12%).

Interpretation. A build order whose the 15 build is with the smallest build size allows for higher
reuse of the artifacts of the preceding configurations. This is because the build order starting from
the smallest size largely reduces the conflict of reusing artifacts. Assuming that the incremental
build systems would build artifacts in a sequence from the largest to the smallest, the first build
should take a significant amount of time, but subsequent smaller builds should be accelerated. As a
result of our evaluation, we concluded that it is more beneficial to build from the smallest build

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

67:16 Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger

&

& £ &
N & N
& < %e \%A o{\c \

D & $ <

10,000

1,000
100
10
1

N

Fig. 10. Comparison of Build Efficiency with Largest-first and Smallest-first Ordering Strategies
rather than the largest build. The main differences between software configurations can be found
in the difference between build targets and build commands. In different configurations, the same
build target would produce different artifacts as a result of different build commands. Starting with
the largest-sized build may lead to some artifacts not being effectively reused. When generating
large-scale builds, intermediate artifacts are generated and cleaned up afterward to create complex
artifacts. However, in small-scale build size configurations, these same artifacts are not cleaned up
and can be reused in the production of large-scale builds.

m Largest [JSmallest

Build Time (Sec.)

Answer to Q3: BuddiPlanner creates a build order starting with the smallest-sized build is reduced by an
average of 160.23s (16%) in terms of build time compared to the build order starting with the largest-sized
build, with a median saving 33.99s (12%), which demonstrates the smallest-sized build as the 15t build is
more efficient than the largest-sized build.

4.6 Effects of Experiment Decisions (Q4)

This section aims to evaluate the effects on the effectiveness of 20 random configurations and 10
random orders on BuddiPlanner’s evaluation.

4.6.1 Multiple Configuration Sets and Sequential Build Order. In this section, we evaluated the
effects on the set containing 20 random configurations (cf Section 4.3) relative to the four sets of
configurations and sequential build order of BuddiPlanner.

Results. Fig. 11 shows the results of our evaluation. BuddiPlanner’s order outperforms the
sequential order in 75% (60/80) of the random configurations in terms of build time. The utilization of
multiple configuration sets containing random configurations reduces the efficiency of BuddiPlanner
when compared with the configuration set containing 20 random configurations used in Q1-Q3.
A randomly generated configuration set with 20 random configurations yields a positive effect
(increasing the percentage better than the baseline) on the evaluation of BuddiPlanner. Random
order can also be effective in speeding up the build process when configurations are close to each
other. The range of time in which the efficiency of building sequential orders surpasses that of
BuddiPlanner’s order stands between 0.001s (0.01%)—8.55s (6%), with a limited difference between
the two orders. However, we observe that BuddiPlanner’s order can significantly reduce the build
times for large-scale projects such as PHP, X264, vim, FFmpeg, and ruby. Overall, the evaluation
of BuddiPlanner is positively affected by the decision to generate a configuration set containing
20 random configurations for each project individually. However, this positive effect is limited,
especially in the case of large-scale projects.

4.6.2 Manually Selected Configurations and All Build Orders. In this section, we evaluated the
effects on 10 random orders (cf: Section 4.3) relative to manually selected four configurations and
all build orders of BuddiPlanner.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

Towards Efficient Build Ordering for Incremental Builds with Multiple Configurations 67:17

mmm Random Orders BuddiPlanner
BuddiPlanner = %= Random Configurations 200

JREREEY SRR

e - - - - = X

o
2=
Fx
Time (Sec.)

" > 73

2 2 2
b —
O ——
o e ———
o e ————
© e —

< —

S
=}
b}
IS
3
EY
3
3
S
IS}
S
S
IS
N}
I
3

Orders

Fig. 11. Time Consumption of BuddiPlanner’s Order Fig. 12. Time Consumption of BuddiPlanner’s Order
and Sequential Order in Random Configurations and Random Orders in SQLite Configurations

Results. Fig. 12 shows the evaluation results. We conducted a comparison between BuddiPlanner’s
order and all possible orders (excluding the same order as BuddiPlanner), with being executed three
times for each order build. The build time for BuddiPlanner’s order is 30.51s. For random orders,
the range of build times is between 31.24s to 203.98s. BuddiPlanner produces a build order whose
build time is comparable to the optimal order. BuddiPlanner’s high build efficiency is achieved by
maximizing the reuse of pre-order builds through the calculation of configuration distances. In the
configurations currently utilized in this evaluation, BuddiPlanner demonstrates the effectiveness
comparable to the optimal order. Overall, the decision to randomize 10 orders in configurations
does not have a positive effect on BuddiPlanner’s evaluation.

Answer to Q4: The experimental design of generating a configuration set containing 20 random configura-
tions for each project has a limited positive effect (increasing the percentage better than the baseline) on
BuddiPlanner’s evaluation. The application of random orders does not have a positive effect on the evaluation
of BuddiPlanner. This demonstrates that the design decisions we made in the previous evolutions (Q1) did
not exaggerate BuddiPlanner’s performance.

5 DISCUSSION
This section further discusses the issues relevant to BUDDI, BuddiPlanner, and this study.

Definition of distance. Our definition of distance is similar to the core idea presented in related
work for similarity-driven prioritization for product-line testing [4]. The distance metric presented
in the study is calculated from features that refer to specific features of a product, such as a call or
GPS in a mobile phone, via the Hamming distance [13, 27]. Different features can make up different
products. These features are similar to build configuration options; that is, different configuration
options make up different configurations, which can build different artifacts. However, in the
context of building, we consider that the building of software is essentially established by build
commands and build targets. We consider it ineffective—based on our observations for the projects
we selected—to compute distances by using features, which, in our case, would correspond to
configuration options. Consider the three configurations—C; (disable-libtool-lock, with-pic), C,
(enable-debug, with-readline-lib), C; (disable-amalgamation, with-readline-lib)—in Section 2. Each
configuration has two configuration options. If calculated by options, C; and Cs are the ones with
the smallest distance, since they both have a common configuration option (with-readline-lib).
However, irrespective of whether the build order is C;—C, or C,—Cy, the latter can always be
built quickly by the incremental build system (on our machine the time consumption is 0.04s for
both). When the build order is C,—C3 or C3—C;, the latter still takes much time to build (cf: Fig
1). This demonstrates that merely calculating distances by options is not effective. Our definition
emphasizes the relationship and specificity between build targets and build commands. From Fig 2,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

67:18 Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger

it appears that C; and C, are the same build targets. With our proposed distance metrics, for the
given example, the distance between C; and C; can be calculated to be the minimum.

Actionable insights for practitioners. The benefits of strategically ordering incremental builds
can be clearly demonstrated in our experiments. Prioritizing incremental builds helps reduce the
time and resource pressures associated with software builds. Software configuration sets can be
built faster by carefully ordering incremental builds. Given the limited time, practitioners are able
to build more configurations, or build the same configurations with fewer computing resources.
Practitioners may benefit from it every time they build. The resulting efficacy is not only a reduction
in the amount of time and resources needed to build software, but also, or even more importantly,
the ability to receive quicker feedback.

Heuristic rules. We consider that BuddiPlanner may be improved by heuristic rules. We ana-
lyzed some cases (e.g., orders in Q1 that are faster than BuddiPlanner in terms of build time) and
tracked build commands that can affect the build time (e.g., compilation optimization and linking).
We observed that compilation optimization commands can significantly affect the build time (cf:
Section 3.3). We have not yet found other generalized heuristic rules.

Build failures and different artifacts. Changing the build order can result in different build artifacts,
but these indicate errors in the build scripts. BuddiPlanner does not cause incorrect builds or different
artifacts if the incremental build systems and build scripts are error-free. It has been pointed out in
the previous study [49] that there are instances when different artifacts are built due to the inability
of the incremental build system to recognize the build target correctly (i.e., build dependency
errors in Makefiles cause incorrect incremental builds [37, 53]). Many methods exist to detect build
dependency errors in Makefiles [8, 16, 37, 53].

Random orders are better. In our experiments, we have demonstrated that build orders can be used
to accelerate incremental builds for configuration sets. We observed that BuddiPlanner performs
less efficiently when it comes to a few random orders, but outperforms 96.5% of the random orders.
Determining why a random order was better in some cases is inherently difficult, as performance
might depend on various software components such as compilers, linkers, or packagers for libraries.
Based on the evaluation, the build time for the random orders is only 0.47s (0%) to 24.15s (2%) faster
than BuddiPlanner, which is slim compared to the most cases when BuddiPlanner outperforms the
random orders.

Generality. BuddiPlanner is mainly based on the Make-base build system in this stage, specifically
GNU MAKE. BuddiPlanner could easily extend to other build systems (e.g., Gradle [21], Ninja [46],
and Bazel [7]), and its further adaptation and validation will be included in the future work. For
instance, for Gradle projects, the methods for obtaining build targets and build commands need to
be adapted.

Threats to validity. In the event of fluctuations in the performance of the experimental physical
equipment, our evaluation may be invalidated. To minimize randomness, we halted all other user
processes on the system and ran the experiments on each project three times. The average elapsed
time for each phase was determined as the result. We calculated the standard deviation for the
time of BuddiPlanner’s order and each random order. The results show that running evaluations
three times can effectively mitigate the impact on the validity of experimental results due to
fluctuations in machine performance. The standard deviation ranges from 0.2% (0.046s in CK)
to 0.5% (56.225s in FFmpeg) of order build time. Accordingly, the elapsed time for each project
demonstrates BuddiPlanner’s efficiency.

The effectiveness and efficiency of our approach are evaluated using 20 projects. A threat might
be how the results could be generalized to other projects that we have not taken into account. As

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

Towards Efficient Build Ordering for Incremental Builds with Multiple Configurations 67:19

an effort to mitigate this risk, we chose a large set of projects, including the five projects used in a
previous evaluation [49] as well as 15 additional projects. These projects have been thoroughly
evaluated and are widely used, indicating that they could be a representative set of well-known
projects that offer multiple configurations.

The use of random configurations and random orders might be a threat to validity. Firstly,
random configurations may not represent the practical configurations that practitioners would
use. Although we have tried to consult practitioners in the open-source community (i.e., SQLite
forum [55]) for the configuration options and orders they ever used, unfortunately, we did not
receive a useful response. In addition, constrained by computational resource limits, our evaluation
cannot cover all possible configurable combinations and test all orders. To increase the diversity of
the samples and mitigate the bias of evaluation results, we use a random generation strategy of
configurations and orders. Note that BUDDI does not guarantee to create the order of incremental
builds with the shortest build time. Instead, it is able to generate an order with a build time shorter
than most cases in an efficient manner.

6 RELATED WORK

We introduce the most relevant research related to ordering incremental builds for a software
configuration set.

Incremental build systems. Many works research on incremental build systems [18, 25, 26]. Erdweg
et al. [15] proposed a build system called pluto, which supports fine-grained file dependencies.
Pluto generalizes the traditional concept of timestamps and allows builders to declare their actual
requirements for the content of a file. Pluto collects the builder’s requirements and products and
their markup in a build summary, which allows pluto to provide reliable and optimal incremental
builds. Konat et al. [35] proposed a dynamic dependency graph-based approach that used changed
files to drive the re-build of tasks, loading and executing only those tasks affected by the changes to
achieve more accurate incremental builds. Curtsinger et al. [11] proposed build tools (LaForge and
Riker), which correctly build without specifying dependencies or incremental build steps. Cserép
et al. [10] detected only the files that needed to be built by parsing the overall code base. The file
to be rebuilt was one that had been modified or whose generation rules had been changed, so
they did not need to detect the timestamp of the file as MAKE [20] does. Randrianaina et al. [49]
demonstrated that incremental build systems can be applied to the build of multiple software
configurations. Furthermore, they demonstrated that a specific build order can accelerate the
building of multiple software configuration sets. To the best of our knowledge, there are no studies
on ordering incremental builds for software configurations.

Since MAKE [20] performs an incremental build strategy in configurations, the correctness of
incremental builds of real projects based on the MAKE build system cannot be guaranteed (build
dependency errors do not correctly trigger incremental builds), and many studies have attempted
to detect build dependency errors to improve this problem.

Detecting build dependency errors. Common build dependency errors are missing dependencies
and redundant dependencies. The former may erroneously prevent the build targets from rebuilding
in incremental builds, while the latter can reduce the execution efficiency of incremental builds and
parallel builds. Xia et al. [60] and Zhao et al. [61] used MAKAQO [1] to parse build scripts and then
analyzed the source code to predict missing dependencies. Licker et al. [37] proposed a method to
detect build dependency errors by triggering a large number of incremental builds. Their method
triggers incremental builds by modifying the test file (timestamp) to observe if the desired file was
rebuilt. Bezemer et al. [8] and Fan et al. [16] leveraged parsing build scripts and monitoring actual
builds to detect build dependency errors.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

67:20 Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger

Empirical studies on build systems. Software builds are at the heart of all projects, and several
empirical studies on build systems have been performed. Seo et al. [52] examined 26.6 million
releases and found that dependency errors were the most common type of error in C++ (52.68%) and
Java (64.71%) projects. The study shows that build maintenance accounts for 27% of the development
overhead of source code and 44% of the test development overhead. Frequent maintenance of builds
may affect practitioner efficiency. McIntosh et al. [44] pointed out that up to 79% of source code
developers and 89% of test code developers are severely impacted by build maintenance.

Software product line (SPL). Software configuration is one of the primary measures for building
software variants. The SPL community has proposed a number of ways to manage a range of
variants [14, 24, 29, 39]. The primary principle of these techniques is to exploit the similarities
between variants. Similarities between variants are often used in SPL testing to reduce the testing
workload [12, 13, 32, 33, 40, 47]. Al-Hajjaji et al. [2, 3] proposed a similarity-based prioritization
method where they select the most functionally diverse product for the next test incrementally.
This method increases effectiveness in terms of fault detection ratio. They also improved the
effectiveness of SPL testing through delta-oriented prioritization [4], which orders products based
on their similarity in delta modelings (a method of automating product derivation for SPL, it is to
apply an operation on the specified core model, such as adding an element [9]). Henard et al. [28]
sampled and prioritized products based on similarities between them. On this basis, Saini et al. [50]
proposed a method for calculating inter-product distances based on the original and desired features
of products in the same product line. Khoshmanesh and Lutz [31] proposed a method for detecting
problematic interactions involving new features using feature-level similarity metrics that can
effectively detect unplanned interactions of new features with existing features. In addition, static
analysis and type checking are used to find errors in configurable software and can be extended to
code bases, such as the Linux kernel [51, 57, 59].

BuddiPlanner similarly orders incremental builds based on the distance between software con-
figurations. However, BuddiPlanner takes account of the differences between the build targets and
commands in the build script, in contrast to the previous approach. Differences in build scripts are
more elaborate and complex than differences between features and delta modelings.

7 CONCLUSION

In this paper, we propose an approach, BUDDI, to order incremental builds to accelerate the build of
the entire set of software configurations. The evaluation shows that BUDDI outperforms the random
orders by 96.5% across the 20 projects evaluated, reducing build times by 8.87s (1%)—1960.26s (67%).
The order generated by BuddiPlanner is able to save an average of 305.94s (26%) over the random
orders, with a median saving of 64.88s (28%). Our approach is able to prioritize incremental builds
of a software configuration set in an efficient manner, merely requiring 0.92s-324.72s across the
tested projects. It is expected that BuddiPlanner helps relieve the burden of allocating significant
build time and computational resources required by practitioners when building with multiple
software configurations.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (N0.62202219,
No0.62072227, No0.62302210), the Jiangsu Provincial Key Research and Development Program
(No.BE2021002-2), and the Innovation Project and Overseas Open Project of State Key Laboratory
for Novel Software Technology (Nanjing University) (ZZKT2022A25, KFKT2022A09, KFKT2023A09,
KFKT2023A10).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

Towards Efficient Build Ordering for Incremental Builds with Multiple Configurations 67:21

REFERENCES

[1] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. 2007. Design recovery and maintenance of

[11
[12

[13

[14

[15

[16

—

]

—

]

]

—

]

build systems. In Proceedings of 23rd IEEE International Conference on Software Maintenance (ICSM 2007), October 2-5,
2007, Paris, France. IEEE Computer Society, 114-123. https://doi.org/10.1109/ICSM.2007.4362624

Mustafa Al-Hajjaji, Thomas Thiim, Malte Lochau, Jens Meinicke, and Gunter Saake. 2019. Effective product-line testing
using similarity-based product prioritization. Softw. Syst. Model. 18, 1 (2019), 499-521. https://doi.org/10.1007/s10270-
016-0569-2

Mustafa Al-Hajjaji, Thomas Thiim, Jens Meinicke, Malte Lochau, and Gunter Saake. 2014. Similarity-based prioritization
in software product-line testing. In Proceedings of the 18th International Software Product Line Conference, SPLC ’14,
Florence, Italy, September 15-19, 2014, Stefania Gnesi, Alessandro Fantechi, Patrick Heymans, Julia Rubin, Krzysztof
Czarnecki, and Deepak Dhungana (Eds.). ACM, 197-206. https://doi.org/10.1145/2648511.2648532

Mustafa Zaid Saleh Al-Hajjaji. 2017. Similarity-driven prioritization and sampling for product-line testing. http:
//dx.doi.org/10.25673/5169

Ant. Online; 2022. Apache Ant manual. Retrieved 2022 from https://ant.apache.org/manual/

Andrea Arcuri and Lionel C. Briand. 2011. A practical guide for using statistical tests to assess randomized algorithms
in software engineering. In Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu , HI, USA, May 21-28, 2011, Richard N. Taylor, Harald C. Gall, and Nenad Medvidovic (Eds.). ACM, 1-10.
https://doi.org/10.1145/1985793.1985795

Bazel 2023. Bazel: a fast, scalable, multi-language and extensible build system. Retrieved 2023 from https://bazel.google.cn
Cor-Paul Bezemer, Shane McIntosh, Bram Adams, Daniel M. German, and Ahmed E. Hassan. 2017. An empirical study
of unspecified dependencies in make-based build systems. Empir. Softw. Eng. 22, 6 (2017), 3117-3148.

Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. 2015. Abstract delta modelling. Math. Struct. Comput. Sci. 25, 3
(2015), 482-527. https://doi.org/10.1017/50960129512000941

Maté Cserép and Anett Fekete. 2020. Integration of Incremental Build Systems Into Software Comprehension Tools.
In Proceedings of the 11th International Conference on Applied Informatics Eger, Hungary, January 29-31, 2020 (CEUR
Workshop Proceedings, Vol. 2650), Gergely Kovasznai, Istvan Fazekas, and Tibor Témacs (Eds.). CEUR-WS.org, 85-93.
http://ceur-ws.org/Vol-2650/paper10.pdf

Charlie Curtsinger and Daniel W. Barowy. 2021. LaForge: Always-Correct and Fast Incremental Builds from Simple
Specifications. CoRR abs/2108.12469 (2021). arXiv:2108.12469 https://arxiv.org/abs/2108.12469

Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative programming - methods, tools and applications.
Addison-Wesley. http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258
Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre-Yves Schobbens, and Patrick Heymans. 2016. Search-based
Similarity-driven Behavioural SPL Testing. In Proceedings of the Tenth International Workshop on Variability Modelling
of Software-intensive Systems, Salvador, Brazil, January 27 - 29, 2016, Ina Schaefer, Vander Alves, and Eduardo Santana
de Almeida (Eds.). ACM, 89-96. https://doi.org/10.1145/2866614.2866627

Oscar Diaz, Leticia Montalvillo, Raul Medeiros, Maider Azanza, and Thomas Fogdal. 2022. Visualizing the customization
endeavor in product-based-evolving software product lines: a case of action design research. Empir. Softw. Eng. 27, 3
(2022), 75. https://doi.org/10.1007/s10664-021-10101-6

Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. 2015. A sound and optimal incremental build system with
dynamic dependencies. In Proceedings of the 2015 International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan Aldrich and
Patrick Eugster (Eds.). ACM, 89-106. https://doi.org/10.1145/2814270.2814316

Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi, and Charles Zhang. 2020. Escaping dependency
hell: finding build dependency errors with the unified dependency graph. In Proceedings of 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22, 2020. ACM, 463-474. https:
//doi.org/10.1145/3395363.3397388

Stuart I. Feldman. 1979. Make-A Program for Maintaining Computer Programs. Softw. Pract. Exp. 9, 4 (1979), 255-65.
https://doi.org/10.1002/spe.4380090402

Ray Ford and Mary Pfreundschuh Wagner. 1990. Incremental concurrent builds for modular systems . 7. Syst. Softw.
13,3 (1990), 157-176. https://doi.org/10.1016/0164-1212(90)90092-Z

GCC 2023. Using the GNU Compiler Collection. Retrieved 2023 from https://gcc.gnu.org/onlinedocs/gec-10.4.0/gec/#toc-
GCC-Command-Options

GNU make 2020. GNU make manual. Retrieved 2022 from https://www.gnu.org/software/make/manual/make.html
Gradle 2023. Gradle Build Tool. Retrieved 2023 from https://gradle.org/

Gradle 2023. Gradle User Manual. Retrieved 2023 from https://docs.gradle.org/current/userguide/userguide.html
Gradle Plugins 2023. Developing Custom Gradle Plugins. Retrieved 2023 from https://docs.gradle.org/current/userguide/
custom_plugins.html

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

https://doi.org/10.1109/ICSM.2007.4362624
https://doi.org/10.1007/s10270-016-0569-2
https://doi.org/10.1007/s10270-016-0569-2
https://doi.org/10.1145/2648511.2648532
http://dx.doi.org/10.25673/5169
http://dx.doi.org/10.25673/5169
https://ant.apache.org/manual/
https://doi.org/10.1145/1985793.1985795
https://bazel.google.cn
https://doi.org/10.1017/S0960129512000941
http://ceur-ws.org/Vol-2650/paper10.pdf
https://arxiv.org/abs/2108.12469
https://arxiv.org/abs/2108.12469
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258
https://doi.org/10.1145/2866614.2866627
https://doi.org/10.1007/s10664-021-10101-6
https://doi.org/10.1145/2814270.2814316
https://doi.org/10.1145/3395363.3397388
https://doi.org/10.1145/3395363.3397388
https://doi.org/10.1002/spe.4380090402
https://doi.org/10.1016/0164-1212(90)90092-Z
https://gcc.gnu.org/onlinedocs/gcc-10.4.0/gcc/#toc-GCC-Command-Options
https://gcc.gnu.org/onlinedocs/gcc-10.4.0/gcc/#toc-GCC-Command-Options
https://www.gnu.org/software/make/manual/make.html
https://gradle.org/
https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/custom_plugins.html
https://docs.gradle.org/current/userguide/custom_plugins.html

67:22

[24]

[25]

[26

—

[27

—

[28

—

[29

—

[30
[31]

—

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger

Nahid Hajizadeh, Peyman Jahanbazi, and Reza Akbari. 2023. A Method for Feature Subset Selection in Software
Product Lines. Int. J. Softw. Innov. 11, 1 (2023), 1-22. https://doi.org/10.4018/ijsi.315654

Matthew A. Hammer, Jana Dunfield, Kyle Headley, Nicholas Labich, Jeffrey S. Foster, Michael W. Hicks, and David Van
Horn. 2015. Incremental computation with names. In Proceedings of the 2015 International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October
25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 748-766. https://doi.org/10.1145/2814270.2814305
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J. Economou. 2018. Fungi:
Typed incremental computation with names. CoRR abs/1808.07826 (2018). http://arxiv.org/abs/1808.07826

Richard W Hamming. 1950. Error detecting and error correcting codes. The Bell system technical journal 29, 2 (1950),
147-160.

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick Heymans, and Yves Le Traon. 2014.
Bypassing the Combinatorial Explosion: Using Similarity to Generate and Prioritize T-Wise Test Configurations for
Software Product Lines. IEEE Trans. Software Eng. 40, 7 (2014), 650-670. https://doi.org/10.1109/TSE.2014.2327020
Christian Kastner and Sven Apel. 2008. Type-Checking Software Product Lines - A Formal Approach. In Proceedings of
23rd IEEE International Conference on Automated Software Engineering (ASE 2008), 15-19 September 2008, L’Aquila, Italy.
IEEE Computer Society, 258-267. https://doi.org/10.1109/ASE.2008.36

KernelCI 2023. KernelCI Homepage. Retrieved 2023 from https://kernelci.org/

Seyedehzahra Khoshmanesh and Robyn R. Lutz. 2018. The Role of Similarity in Detecting Feature Interaction in Software
Product Lines. In Proceedings of the 2018 IEEE International Symposium on Software Reliability Engineering Workshops,
ISSRE Workshops, Memphis, TN, USA, October 15-18, 2018, Sudipto Ghosh, Roberto Natella, Bojan Cukic, Robin S. Poston,
and Nuno Laranjeiro (Eds.). IEEE Computer Society, 286-292. https://doi.org/10.1109/ISSREW.2018.00020

Chang Hwan Peter Kim, Don S. Batory, and Sarfraz Khurshid. 2011. Reducing combinatorics in testing product lines.
In Proceedings of the 10th International Conference on Aspect-Oriented Software Development, Porto de Galinhas, Brazil,
March 21-25, 2011, Paulo Borba and Shigeru Chiba (Eds.). ACM, 57-68. https://doi.org/10.1145/1960275.1960284
Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don S. Batory, Sabrina Souto, Paulo Barros, and Marcelo
d’Amorim. 2013. SPLat: lightweight dynamic analysis for reducing combinatorics in testing configurable systems. In
Proceedings of the Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Saint Petersburg, Russian Federation, August 18-26, 2013, Bertrand Meyer,
Luciano Baresi, and Mira Mezini (Eds.). ACM, 257-267. https://doi.org/10.1145/2491411.2491459

Sergiy S. Kolesnikov, Norbert Siegmund, Christian Késtner, Alexander Grebhahn, and Sven Apel. 2019. Tradeoffs
in modeling performance of highly configurable software systems. Softw. Syst. Model. 18, 3 (2019), 2265-2283.
https://doi.org/10.1007/s10270-018-0662-9

Gabriél Konat, Sebastian Erdweg, and Eelco Visser. 2018. Scalable incremental building with dynamic task dependencies.
In Proceedings of the 33rd International Conference on Automated Software Engineering, 2018, Montpellier, France,
September 3-7, 2018, Marianne Huchard, Christian Kastner, and Gordon Fraser (Eds.). ACM, 76-86. https://doi.org/10.
1145/3238147.3238196

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen. 2023. CodaMosa: Escaping Coverage
Plateaus in Test Generation with Pre-trained Large Language Models. In 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 919-931. https://doi.org/10.1109/
ICSE48619.2023.00085

Nandor Licker and Andrew Rice. 2019. Detecting incorrect build rules. In Proceedings of the 41st International Conference
on Software Engineering, 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle
(Eds.). IEEE / ACM, 1234-1244. https://doi.org/10.1109/ICSE.2019.00125

Jackson A. Prado Lima, Willian Douglas Ferrari Mendonga, Silvia R. Vergilio, and Wesley K. G. Assuncao. 2020.
Learning-based prioritization of test cases in continuous integration of highly-configurable software. In Proceedings of
the24th ACM International Systems and Software Product Line Conference, Montreal, Quebec, Canada, October 19-23,
2020, Volume A, Roberto Erick Lopez-Herrejon (Ed.). ACM, 31:1-31:11. https://doi.org/10.1145/3382025.3414967
Jackson A. Prado Lima, Willian Douglas Ferrari Mendonga, Silvia R. Vergilio, and Wesley K. G. Assuncao. 2020.
Learning-based prioritization of test cases in continuous integration of highly-configurable software. In SPLC °20:
24th ACM International Systems and Software Product Line Conference, Montreal, Quebec, Canada, October 19-23, 2020,
Volume A, Roberto Erick Lopez-Herrejon (Ed.). ACM, 31:1-31:11. https://doi.org/10.1145/3382025.3414967

Urtzi Markiegi, Aitor Arrieta, Leire Etxeberria, and Goiuria Sagardui. 2019. Test case selection using structural coverage
in software product lines for time-budget constrained scenarios. In Proceedings of the 34th ACM Symposium on Applied
Computing, SAC 2019, Limassol, Cyprus, April 8-12, 2019, Chih-Cheng Hung and George A. Papadopoulos (Eds.). ACM,
2362-2371. https://doi.org/10.1145/3297280.3297512

Hugo Martin, Mathieu Acher, Juliana Alves Pereira, Luc Lesoil, Jean-Marc Jézéquel, and Djamel Eddine Khelladi. 2022.
Transfer Learning Across Variants and Versions: The Case of Linux Kernel Size. IEEE Trans. Software Eng. 48, 11 (2022),

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

https://doi.org/10.4018/ijsi.315654
https://doi.org/10.1145/2814270.2814305
http://arxiv.org/abs/1808.07826
https://doi.org/10.1109/TSE.2014.2327020
https://doi.org/10.1109/ASE.2008.36
https://kernelci.org/
https://doi.org/10.1109/ISSREW.2018.00020
https://doi.org/10.1145/1960275.1960284
https://doi.org/10.1145/2491411.2491459
https://doi.org/10.1007/s10270-018-0662-9
https://doi.org/10.1145/3238147.3238196
https://doi.org/10.1145/3238147.3238196
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE.2019.00125
https://doi.org/10.1145/3382025.3414967
https://doi.org/10.1145/3382025.3414967
https://doi.org/10.1145/3297280.3297512

Towards Efficient Build Ordering for Incremental Builds with Multiple Configurations 67:23

[42

—

[43

[t

[44

[l

[45

[

[46
[47

—

[48]

[49

—

[50

[t

(51

—

[52]

[59]

[60]

[61]

4274-4290. https://doi.org/10.1109/TSE.2021.3116768

Maven. Online; 2022. Apache Maven: a software project management and comprehension tool. Retrieved 2022 from
https://maven.apache.org/

Shane McIntosh, Bram Adams, Meiyappan Nagappan, and Ahmed E. Hassan. 2014. Mining Co-change Information
to Understand When Build Changes Are Necessary. In Proceedings of 30th International Conference on Software
Maintenance and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014. IEEE Computer Society, 241-250.
https://doi.org/10.1109/ICSME.2014.46

Shane McIntosh, Bram Adams, Thanh H. D. Nguyen, Yasutaka Kamei, and Ahmed E. Hassan. 2011. An empirical
study of build maintenance effort. In Proceedings of the 33rd International Conference on Software Engineering, Waikiki,
Honolulu , HI, USA, May 21-28, 2011, Richard N. Taylor, Harald C. Gall, and Nenad Medvidovic (Eds.). ACM, 141-150.
https://doi.org/10.1145/1985793.1985813

Shane McIntosh, Meiyappan Nagappan, Bram Adams, Audris Mockus, and Ahmed E. Hassan. 2015. A Large-Scale
Empirical Study of the Relationship between Build Technology and Build Maintenance. Empir. Softw. Eng. 20, 6 (2015),
1587-1633. https://doi.org/10.1007/s10664-014-9324-x

Ninja. Online; 2022. Ninja, a small build system with a focus on speed. Retrieved 2022 from https://ninja-build.org/
Klaus Pohl, Giinter Bockle, and Frank van der Linden. 2005. Software Product Line Engineering - Foundations, Principles,
and Techniques. Springer. https://doi.org/10.1007/3-540-28901-1

Georges Aaron Randrianaina, Djamel Eddine Khelladi, Olivier Zendra, and Mathieu Acher. 2022. Towards Incremental
Build of Software Configurations. In Proceedings of the 44th IEEE/ACM International Conference on Software Engineering:
New Ideas and Emerging Results 2022, Pittsburgh, PA, USA, May 22-24, 2022, Liliana Pasquale and Christoph Treude
(Eds.). IEEE/ACM, 101-105. https://doi.org/10.1109/ICSE-NIER55298.2022.9793538

Georges Aaron Randrianaina, Xhevahire Térnava, Djamel Eddine Khelladi, and Mathieu Acher. 2022. On the Benefits
and Limits of Incremental Build of Software Configurations: An Exploratory Study. In Proceedings of 44th International
Conference on Software Engineering, 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 1584-1596. https://doi.org/10.
1145/3510003.3510190

Ashish Saini, Raj Kumar, Amrita Kumari, Satendra Kumar, and Mukesh Kumar. 2023. Exploratory Testing of Software
Product Linesusing Distance Metrics. In Proceedings of the 2023 International Conference on Computational Intelligence
and Sustainable Engineering Solutions (CISES). 542-546. https://doi.org/10.1109/CISES58720.2023.10183535

Philipp Dominik Schubert, Paul Gazzillo, Zach Patterson, Julian Braha, Fabian Schiebel, Ben Hermann, Shiyi Wei,
and Eric Bodden. 2022. Static data-flow analysis for software product lines in C. Autom. Softw. Eng. 29, 1 (2022), 35.
https://doi.org/10.1007/s10515-022-00333-1

Hyunmin Seo, Caitlin Sadowski, Sebastian G. Elbaum, Edward Aftandilian, and Robert W. Bowdidge. 2014. Programmers’
build errors: a case study (at google). In Proceedings of the 36th International Conference on Software Engineering,
Hyderabad, India - May 31 - June 07, 2014, Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM,
724-734. https://doi.org/10.1145/2568225.2568255

Thodoris Sotiropoulos, Stefanos Chaliasos, Dimitris Mitropoulos, and Diomidis Spinellis. 2020. A model for detecting
faults in build specifications. Proc. ACM Program. Lang. 4, OOPSLA (2020), 144:1-144:30. https://doi.org/10.1145/3428212
SQLite 2023. How To Compile SQLite. Retrieved 2023 from https://sqlite.org/howtocompile.html

SQLite 2023. SQLite Forum. Retrieved 2023 from https://sqlite.org/forum/forum

Sqlite-jdbc 2023. Sqlite-jdbc Makefile. Retrieved 2023 from https://github.com/xerial/sqlite-jdbc/blob/master/Makefile
Maurice H. ter Beek, Ferruccio Damiani, Michael Lienhardt, Franco Mazzanti, and Luca Paolini. 2022. Efficient static
analysis and verification of featured transition systems. Empir. Softw. Eng. 27,1 (2022), 10. https://doi.org/10.1007/s10664-
020-09930-8

Bogdan Vasilescu, Stef van Schuylenburg, Jules Wulms, Alexander Serebrenik, and Mark G. J. van den Brand. 2014.
Continuous Integration in a Social-Coding World: Empirical Evidence from GitHub. In Proceedings of the 30th IEEE
International Conference on Software Maintenance and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014.
IEEE Computer Society, 401-405. https://doi.org/10.1109/ICSME.2014.62

Alexander von Rhein, Jorg Liebig, Andreas Janker, Christian Kastner, and Sven Apel. 2018. Variability-Aware Static
Analysis at Scale: An Empirical Study. ACM Trans. Softw. Eng. Methodol. 27, 4 (2018), 18:1-18:33. https://doi.org/10.
1145/3280986

Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. 2014. Build system analysis with link prediction. In Symposium on
Applied Computing, SAC 2014, Gyeongju, Republic of Korea - March 24 - 28, 2014, Yookun Cho, Sung Y. Shin, Sang-Wook
Kim, Chih-Cheng Hung, and Jiman Hong (Eds.). ACM, 1184-1186. https://doi.org/10.1145/2554850.2555134

Bo Zhou, Xin Xia, David Lo, and Xinyu Wang. 2014. Build Predictor: More Accurate Missed Dependency Prediction
in Build Configuration Files. In Proceedings of the IEEE 38th Annual Computer Software and Applications Conference,
COMPSAC 2014, Vasteras, Sweden, July 21-25, 2014. IEEE Computer Society, 53-58. https://doi.org/10.1109/COMPSAC.
2014.12

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

https://doi.org/10.1109/TSE.2021.3116768
https://maven.apache.org/
https://doi.org/10.1109/ICSME.2014.46
https://doi.org/10.1145/1985793.1985813
https://doi.org/10.1007/s10664-014-9324-x
https://ninja-build.org/
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1109/ICSE-NIER55298.2022.9793538
https://doi.org/10.1145/3510003.3510190
https://doi.org/10.1145/3510003.3510190
https://doi.org/10.1109/CISES58720.2023.10183535
https://doi.org/10.1007/s10515-022-00333-1
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1145/3428212
https://sqlite.org/howtocompile.html
https://sqlite.org/forum/forum
https://github.com/xerial/sqlite-jdbc/blob/master/Makefile
https://doi.org/10.1007/s10664-020-09930-8
https://doi.org/10.1007/s10664-020-09930-8
https://doi.org/10.1109/ICSME.2014.62
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
https://doi.org/10.1145/2554850.2555134
https://doi.org/10.1109/COMPSAC.2014.12
https://doi.org/10.1109/COMPSAC.2014.12

67:24 Jun Lyu, Shanshan Li, He Zhang, Lanxin Yang, Bohan Liu, and Manuel Rigger

Received 2023-09-28; accepted 2024-04-16

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 67. Publication date: July 2024.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Overview
	3.2 Declaration Distance and Build Size
	3.3 Ordering Builds

	4 Evaluation
	4.1 Questions
	4.2 Experimental Settings
	4.3 Effectiveness (Q1)
	4.4 Efficiency (Q2)
	4.5 Efficiency of the Order From the Largest Build Size (Q3)
	4.6 Effects of Experiment Decisions (Q4)

	5 Discussion
	6 Related Work
	7 Conclusion
	References

